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Abstract—Decentralized cryptocurrency exchanges offer com-
pelling security benefits over centralized exchanges: users control
their funds and avoid the risk of an exchange hack or malicious
operator. However, because user assets are fully accessible by
a secret key, decentralized exchanges pose significant internal
security risks for trading firms and automated trading systems,
where a compromised system can result in total loss of funds.
Centralized exchanges mitigate this risk through API key based
security policies that allow professional users to give individual
traders or automated systems specific and customizable access
rights such as trading or withdrawal limits. Such policies,
however, are not compatible with decentralized exchanges, where
all exchange operations require a signature generated by the
owner’s secret key. This paper introduces a protocol based
upon multiparty computation that allows for the creation of
API keys and security policies that can be applied to any
existing decentralized exchange. Our protocol works with both
ECDSA and EdDSA signature schemes and prioritizes efficient
computation and communication. We have deployed this protocol
on Nash exchange, as well as around several Ethereum-based
automated market maker smart contracts, where it secures the
trading accounts and wallets of thousands of users.

I. INTRODUCTION

Centralized cryptocurrency exchanges hold custody of user

funds and promise access to those funds when requested. As

these exchanges often own large amounts of cryptocurrency

funds in aggregate across their users, they are very attractive

targets for criminals. Hundreds of millions of dollars of

cryptocurrency have been lost over the years through hacks

or malicious operators. These security problems are a major

driver behind the success of decentralized1 exchanges, where

users hold their own secret keys.

Decentralized exchanges must overcome their own set of

security challenges, however. In particular, automated trad-

ing algorithms deployed on decentralized exchanges must be

trusted to hold and secure a secret key which fully controls

user funds. Such trading algorithms are often hosted on cloud

infrastructure and operate on shared accounts within trading

firms, posing social and technical security risks. This is a

significant limitation for professional users such as market

makers. These users cannot provide restricted access to their

account’s capabilities such that their trading software may only

trade; their software could as well withdraw funds, which

significantly increases downside risk in the event their software

or systems are compromised.

1In this paper, we use the established term decentralized, but we could
equally use the terms non-custodial or self-custodial.

Centralized exchanges overcome such limitations by of-

fering security policies, usually based on API keys, that

include limiting the capabilities of trading algorithms to

withdraw funds or allowing accounts to trade funds only

within certain limits. This functionality is straightforward in

centralized settings because the exchange can simply create

random identifiers and passwords to enforce security policies

via hosted software. While these policies are only as strong

as the security of the centralized exchange itself, they do

reduce the downstream damage if a user’s automated trading

infrastructure is compromised. Unfortunately, such security

policies do not exist on most decentralized cryptocurrency

exchanges today due to the fact that all operations are governed

by digital signatures produced via a single secret key.

In this paper, we introduce a novel protocol that allows

for the creation of API key based security policies for any

decentralized cryptocurrency exchange. The protocol we de-

scribe is currently deployed on Nash [1], but can be applied to

any smart contract based exchange protocol. In fact, the Nash

mobile wallet also applies this protocol to Uniswap [2] and

1inch [3], allowing users to trade over these contracts without

ever accessing their full secret key. The protocol we introduce

has several important properties:

• Policies can be applied and extended to the signature

schemes used by the most popular blockchains: in partic-

ular ECDSA and EdDSA and the most common elliptic

curves on which they are used.

• There are no limitations on the kinds of security policies

which can be enforced. Exchanges can create policies for

withdrawal limits, trading limits, delayed withdrawals, or,

for example, other more esoteric functionality such as

geolocation or biometric information.

• Users fully control their assets and the secret keys that

govern them. Secret keys are never accessible by any

other system or party.

• Signatures produced via the protocol presented in this

paper are efficient in computation, rounds of communi-

cation, and bandwidth; this is important to professional

traders who require low latency for fast order execution

and may trade many times per second.

While trading applications are the primary focus of this

paper, the protocol we describe can easily be extended to

enhance user wallet security as well.

http://arxiv.org/abs/2106.10972v1


2

II. BACKGROUND

A. Digital Signature Schemes

A digital signature scheme consist of three algorithms [4]:

a key generation algorithm, a signing algorithm, and a veri-

fication algorithm. The key generation algorithm generates a

secret signing key and a public verification key. The signing

algorithm is used to generate a signature for a particular

message using the secret key. The verification algorithm is

used with the public key in order to verify the signature for a

particular message (and therefore confirm its authenticity).

B. ECDSA

An ECDSA signature consists of a tuple of integers (r, s)
that is computed as follows [5]:

1) A cryptographically secure nonce k is generated with

0 < k < n, with n the order of the elliptic curve.

The implementer must ensure that the nonce k cannot

be guessed and is not reused for any two messages.

Otherwise, anyone who can guess the nonce used in

one signature or who observes two signatures where the

identical nonces were used twice can derive the secret

key. Since there have been a quite a number of insecure

implementations, a standard was created on how to gen-

erate cryptographically secure nonces deterministically,

which is now used in most implementations [6].

2) A point on the elliptic curve is computed as (x, y) =
k ·G, with G being the generator point of the curve. The

x coordinate of that point is used as the first part of the

signature, i.e., r = x.

3) The second part of the signature s is computed from

the secret key d, the hash of the message z, the first

part of the signature r, and the nonce k as follows: s ≡
k−1 · (z + r · d) mod n.

C. EdDSA

Signature generation in EdDSA works similar to ECDSA.

An EdDSA signature also consists of a tuple of integers (r, s),
but computation differs slightly:

1) First, the secret key is hashed. The first half of the hash

is used as signing key a and the second half is used in

nonce generation.

2) A cryptographically secure nonce is also required in

EdDSA, but generating it is not left to the implementer.

Instead, the nonce k is computed by hashing the con-

catenation of the nonce-part generated in the first step

with the message to be signed.

3) The first part of the signature (r) is computed in exactly

the same way as in ECDSA (besides the fact that there

is a different elliptic curve involved).

4) The second part of the signature s is computed as s =
(k+H(r|A|M) ·a) mod L, where A is the public key,

M the message, and L the order of the Edwards curve.

Note that in contrast to ECDSA, an EdDSA signature

does not involve computing the inverse of the nonce k.

D. Threshold Signature Schemes

Threshold signature schemes are an application of secure

multiparty computation. The basic idea in threshold signature

schemes is that multiple parties are required to generate a

signature. For this purpose, the secret key is split into multiple

key shares, one for each party. The parties use their key shares

to compute partial results, which are then combined to produce

the signature. The resulting signature is indistinguishable from

a signature computed by a single party with the secret key,

such that only the signing and key generation algorithms are

replaced in threshold signature schemes but the verification

algorithm remains unchanged.

A threshold t < n is defined such that any subset of

t or more parties can jointly generate signatures, but any

subset smaller than t can not. It is important to note that,

with threshold signature schemes, the actual secret key never

appears during signature generation.

Efficient threshold signature schemes have existed for some

signature schemes (e.g., Schnorr [7]) for quite some time, but

have only more recently been proposed for ECDSA. Designing

an efficient ECDSA threshold signature scheme is challenging

because signature generation involves the computation of the

inverse of the nonce k, but the threshold setting dictates that

no single party must know the nonce (as it could otherwise

derive the secret key from the resulting signature). EdDSA, on

the other hand, does not involve the computation of the inverse

of the nonce so that designing a threshold EdDSA signature

scheme is significantly less of a challenge.

III. DESIGN GOALS AND PROTOCOL ABSTRACTION

Our API key protocol has been developed to account for

three major design goals. First, it must be non-custodial, such

that a third party never has control over user funds. Second,

it must allow for the creation of flexible security policies

(e.g., withdrawal limits based on time windows or addresses,

market volume restrictions, etc.). Finally, it must minimize

communication overhead, in terms of both bandwidth and

rounds of communication for interacting parties.

The importance of the first design goal is self-evident, as

the main benefit of interacting with a decentralized exchange

is self-custody. A protocol for decentralized API keys should

maintain that property. The second goal seeks to accommodate

the widest possible variety of security policies; an ideal pro-

tocol would allow for the ability to construct any computable

policy. The third goal is important as it allows the protocol to

serve the needs of professional traders. Traders interacting with

centralized exchanges place orders many times per second.

The protocol we have designed works broadly as follows

(see technical details in Section V): Instead of generating

signatures with a secret key residing just on a single machine,

we employ a threshold signature scheme with two parties:

the client and the exchange. Both parties need to cooperate

in order to generate signatures. While the user is still in

possession of the secret key, it is never actively used for

trading. With the secret key, the user only creates API keys

along with policies that describe the capabilities of these

API keys, i.e., under what circumstances the exchange should
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cooperate with the client on generating a signature. A policy

can describe arbitrary properties. For example, a policy can

restrict an API key to trade on certain markets only and to

withdraw funds only to a specific address. So the secret key

can be kept on a trusted, potentially even air gapped, device

while API keys are used for day-to-day activities such as

trading.

Theoretically, multi-signatures could also be used, but

threshold signature schemes provide more flexibility than

multi-signatures, because the underlying blockchains are not

required to provide support specifically. Contrary to multi-

signatures, the signature resulting from a threshold signature

scheme is indistinguishable from a conventional ECDSA sign-

ing algorithm. For this reason, the verification algorithm can

remain unchanged, and even the key generation algorithm can

remain unchanged. Furthermore, it is impossible to secure an

existing address by multi-signatures. A new address needs to

be generated and funds transferred to that new address. An

address can be secured with threshold signatures, however,

without generating a new address and moving funds.

Unfortunately, threshold ECDSA schemes are challenging.

We review existing threshold ECDSA schemes for their suit-

ability to fit our protocol’s design goals in Section IV. One

major difference in our protocol is that the user knows their

secret key. For this reason, API keys can be generated by

the user offline on a trusted device, and the generated API

key can then be transferred to some untrusted device without

harming security. Furthermore, we aim to reduce the latency

as perceived by clients as much as possible. We achieve this

by shifting most of the computation and communication to

earlier points in time, before actual trades are conducted. In

this way, a client can conduct a trade within milliseconds (sub-

millisecond even for EdDSA) with a single message sent to

the exchange server.

IV. EVALUATION OF ECDSA THRESHOLD SIGNATURE

SCHEMES

We evaluate all recently proposed threshold ECDSA sig-

nature schemes (roughly in chronological order) with regard

to their suitability to build the foundation of the protocol

presented in this paper.

Green and Eisenbarth [12] improved upon original work

from Ibrahim et al. [13] and Gennaro et al. [14]. The au-

thors introduced fully distributed key generation and rekey-

ing and modified the signing algorithm slightly to improve

performance. However, the number of participants required

is ≥ 2 · t, with t being the threshold required to generate

signatures. Since neither the client nor the exchange must be

able to generate signatures unilaterally, a threshold of 2 means

that we would need to introduce additional parties, which

is sub-optimal in the setting of decentralized cryptocurrency

exchanges.

Gennaro, Goldfeder, and Narayanan [15] published the first

threshold-optimal scheme (for DSA/ECDSA), with n > t.

Signature generation requires 6 rounds of communication,

however, which impairs fast execution.

Lindell proposed a 2-party (2-of-2) threshold signature

scheme [8] [9]2. While a 2-party threshold signature scheme

seems like a significant limitation at the first glance, it is

sufficient for the protocol that encompasses a client and an

exchange. The scheme requires just 2 rounds of communi-

cation for generating a signature, is bandwidth-efficient, and

computationally relatively fast. This efficiency is achieved by

one party holding a homomorphic encryption of the other

party’s key share. This threshold ECDSA signature scheme

is the first reasonable candidate to build the foundation of our

protocol.

Boneh, Gennaro, and Goldfeder [16] improve upon Gen-

naro, Goldfeder, and Narayanan’s work [15], reducing the

number of communication rounds required for signature gen-

eration from 6 to 4, which is still more than the 2 rounds

of [8], and the back-and-forth communication creates addi-

tional latency that impairs efficient trading.

The 2-of-2 and 2-of-n ECDSA threshold schemes proposed

by Doerner et al. [10] do not rely on homomorphic encryption

but instead use Oblivious Transfer (OT) multiplication. Signa-

ture generation is extremely performant and requires just 2
rounds of communication, but the bandwidth requirements are

rather high. Nonetheless, it is a reasonable candidate.

Lindell and Nof [17] published a full threshold (t-of-n)

ECDSA signature scheme. Instead of homomorphic encryp-

tion, the authors use ElGamal “in the exponent” to facilitate

practical key generation in a multi-party setting and make

signature generation more efficient. For signature generation,

however, 8 rounds of communication are needed, which makes

the scheme impractical in our protocol.

Gennaro and Goldfeder [18] improve upon Boneh, Gennaro,

and Goldfeder’s work [16], reducing communication overhead

and the time to generate signatures. The number of com-

munication rounds is increased to 9, however, which creates

additional latency that impairs efficient trading.

Doerner et al. [19] [20] improve upon their previous

work [10], extending it from a 2-of-n to a full t-of-n thresh-

old signature scheme. The number of communication rounds

required is log(t) + 6, however, which makes the scheme

impractical in our protocol.

Castagnos et al. [11] generalized Lindell’s 2-of-2 threshold

signature scheme [8] using hash proof systems. The scheme

achieves good performance and requires low bandwidth, which

makes it the third reasonable candidate to build the foundation

of API keys for our protocol.

Castagnos et al. [21] build upon Gennaro and Goldfeder’s

t-of-n threshold signature scheme [18], improving computa-

tional and bandwidth efficiency. The number of communica-

tion rounds required for generating signatures is reduced from

9 to 8, which leaves the scheme still impractical for our use.

Summary of Evaluation

While most recent t-of-n ECDSA threshold signature

schemes are threshold-optimal, our evaluation revealed that

all of them require too many rounds of communication for

2Note that the full version of the paper [9] has received significant updates
after the original publication.
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TABLE I
SUMMARY OF ECDSA THRESHOLD SIGNATURE SCHEMES CANDIDATES

Scheme Threshold-optimal Rounds (signing) Signing time Signing bandwidth

Lindell [8] [9] ✓ 2 ∼ 35ms ∼ 0.8 kB
Doerner et al. [10] ✓ 2 ∼ 3ms ∼ 85.7 kB
Castagnos et al. [11] ✓ 2 ∼ 150ms ∼ 5.6 kB

signature generation. 2-of-2 or 2-of-n ECDSA threshold sig-

nature schemes, on the other hand, require only 2 rounds

of communication, which significantly reduces latency and

therefore facilitates efficient trading. It remains an open ques-

tion whether the higher number of rounds of t-of-n ECDSA

threshold signature schemes is a fundamental limitation or just

requires further research. In any case, for our protocol, a 2-

of-2 ECDSA threshold signature scheme is sufficient, and we

continue our evaluation of the three candidate schemes.

Our evaluation resulted in three candidate schemes by

Lindell [8], Doerner et al. [10], and Castagnos et al. [11].

All three candidates are threshold-optimal and require just 2
rounds of communication for signature generation. Apart from

the cryptographic assumptions the schemes rely on, they differ

in performance in terms of time required to generate signatures

and the bandwidth required. Lindell’s scheme [8] has good

performance in terms of time required to generate a signature

(∼35ms) and requires the least bandwidth (∼0.8kB). While

Doerner et al.’s scheme [10] is the fastest, it also requires

significantly more bandwidth. Traders conducting thousands

of trades per second would require tens of Gbit of bandwidth

solely for generating signatures, which represents a significant

disadvantage for Doerner et al.’s scheme. Castagnos et al.’s

scheme [21] is second of the three with regard to bandwidth

required (∼5.6kB) but brings a significant disadvantage in

terms of time to generate a signature (∼150ms), which makes

it less favorable. So Lindell’s scheme [8] remains as the best

contender overall — in terms of bandwidth and in terms

of time to generate a signature. Table I summarizes the

results. And, as we will explain in Section V, we improve

the perceived signing time such that it is almost en par with

Doerner et al.’s scheme [10].

V. API KEYS FOR DECENTRALIZED EXCHANGES

A. ECDSA Threshold Signature Schemes

With a 2-of-2 threshold signature scheme, the two parties,

i.e., the user and the exchange, are both required to cooper-

ate during day-to-day operations, i.e., generate signatures on

transactions. To this end, the full secret key x is split into two

multiplicative secret shares x1 and x2 where x ≡ x1 · x2

mod q, with q being the order of the elliptic curve. One

key share remains with the user’s client, i.e., the machine

holding the API key, and the other key share goes to the

exchange. Signatures that would be valid under the public

key cannot be generated with one key share alone and neither

does knowledge of any one key share (i.e., x1 or x2) leak

information about the full secret key x. Both parties can

therefore control user’s funds only when collaborating. In this

way, the exchange can restrict an API key’s capability (by

refusing to collaborate) without requiring full access to the

user’s funds. Generally speaking, two parties interact in secret-

key-operations (i.e., signing), and neither party can manipulate

that operation to gain an advantage, even if that party is

malicious. The most harmful thing a malicious party can do

during signature generation is to prevent the operation from

completing.

For the reasons outlined in Section IV, we build upon the

signing algorithm from Lindell’s scheme [8]. However, there

exist (significant) differences:

1) API keys are generated solely by the client.

2) We significantly improve performance by using Diffie-

Hellman key exchange instead of a coin tossing protocol.

3) We dramatically improve the perceived performance by

employing a 2-phase approach for generating signatures.

B. API Key Generation

An API key is generated by the user’s machine with access

to the full secret key. Since that machine is considered a

“trusted dealer”, API key generation can happen entirely on

the client. At first glance, this may sound counter-intuitive, but

it is a result of the fact that we exploit knowledge of the full

secret key on the client. With this trick, the client can create

API keys efficiently.

An API key consists of two secret shares: the client secret

share and the (encrypted) exchange secret share. The client sets

the exchange’s secret share x1 initially to 1 and the client’s

secret share x2 to the full secret key x. Then, a random number

r (not to be confused with the r-part of an ECDSA signature)

is generated by the client and the secret shares are updated as

follows:

1) The update to the exchange’s secret share is computed

x1′ ≡ x1 · r mod q.

2) The new exchange’s secret share x1′ is encrypted under

the exchange’s Paillier public key.

3) The update to the client’s secret share is computed x2′ ≡
x2 · r

−1 mod q.

Note that x ≡ x1 · x2 ≡ x1′ · x2′ mod q, and therefore the

full secret key x, the public key, and the corresponding address

remain unchanged such that – with the help of the API key

– signatures can be generated that are indistinguishable from

signatures generated by the full secret key and are therefore

oblivious to blockchains.

The client using the API key must not be able to gain knowl-

edge of the full secret key. For this reason, the exchange’s

secret share is encrypted under the exchange’s Paillier public

key. Note that the client must verify that the Paillier public

key was generated correctly. A Paillier public key is defined
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as N = p · q, with p, q being large primes. In order to

certify that the exchange has generated the Paillier public key

correctly, it needs to proof that gcd(N,φ(N)) = 1 holds.

To this end, we use the proof from Goldberg et al. [22]

Section 3.2 with parameters α = 6370 and m1 = m2 = 11 as

suggested by Lindell and Nof [17] in Section 6.3.2. Since the

exchange needs to create just a single Paillier key pair for all

users, it needs to compute the proof of correctness just once.

On the client side, verifying the correctness of the Paillier

public key needs to be conducted only once as well, but is

computationally rather efficient (∼41ms) anyway.

C. Signature Generation: Preparation Phase

For signature generation, we employ a 2-phase approach.

The main idea with such a 2-phase approach is to shift some

required communication and computation into a message-

independent preparation phase such that the finalization phase

can happen with a single message from the client to the

exchange. By leveraging computational resources when a

trader is not trading, performance is improved significantly.

With just one round of communication, client and server

prepare a pool of (arbitrarily many) elliptic curve points, from

which the first part of the signature is derived (as described

in Section II-B). Recall that a point is computed as R = k ·G
where k is a cryptographically secure nonce. Knowledge of

k allows deriving the secret key from a signature, so neither

client nor exchange must know k. We employ the elliptic-curve

Diffie-Hellman (ECDH) key agreement protocol in a bit of an

unusual way. Commonly, ECDH is used to generate a shared

secret over an insecure channel such that an observer of the

communication cannot derive the shared secret. In our case,

we employ ECDH such that the communicating parties arrive

at a shared value (which will be made public afterwards) but

do not know the other party’s secret value. In the threshold

ECDSA setting k ≡ k1 · k2 mod q, and each party knows R

and either k1 or k2 but cannot derive k (unless that party could

solve the elliptic curve discrete logarithm problem, which is

supposedly intractable).

The main advantage of this 2-phase approach is that the

signature finalization phase can be done computationally ef-

ficiently with just a single message from the client to the

exchange. This efficiency is achieved by shifting most of

the communication and computational work into the sig-

nature preparation phase. The computational work entails

the (precomputed) randomness for Paillier encryption, which

comprises modular exponentiation on big integers, and scalar

multiplication. The storage overhead is negligibly small with

65B per prepared point on the server (33B for the compressed

point representation and 32B for the server’s DH secret)3.

Storage overhead is also small on the client with 321B per

prepared point on the client (33B for the compressed point

representation, 32B for the client’s DH secret, and 256B for

the Paillier randomness). Computational cost and bandwidth

required for the preparation phase increases linearly with the

number of points to prepare, but this preparational step can

3Note that the provided numbers represent the minimum and may be
slightly higher depending on the encoding used.

happen anytime before the user wants to trade (e.g., right after

login) such that it does not affect the performance of creating

the final signature (which is effectively what traders perceive

as latency). Table II depicts the preparation phase of signature

generation.

TABLE II
SIGNATURE GENERATION PROTOCOL: PREPARATION PHASE

Exchange Client

Choose random k2
Compute R2 = k2 ·G

R2

←−−

Choose random k1
Compute R1 = k1 ·G
Compute R = k1 ·R2

Store R, k1
R1

−−→

Compute R = k2 · R1

Compute random ρ
Store R, k2, ρ

ρ: (precomputed) randomness for the homomorphic
Paillier encryption scheme.
G: generator of the curve.

D. Signature Generation: Finalization Phase

The signature finalization phase consists just of a single

message from the client to the exchange, like with a centralized

exchange where the client sends a single message indicating

a trade. In this way, there is no effectively communication

overhead in terms of communication rounds.

The client chooses any of the precomputed points and

computes a presignature using the API key and that point.

The client then sends the presignature along with the chosen

point over to the exchange to complete the signature. It is

essential for security that the client deletes the point used to

prevent reuse (and therefore potential compromise of the secret

key). Upon ensuring compliance with the signing policy (see

Section V-F), the exchange completes the signature. Again,

deletion of the point and DH secret used is paramount for

security. Eventually, the correctness of the signature is verified.

Table III depicts the finalization phase of signature generation.

E. Performance

With the 2-phase approach described, no communication

and computation is spared as such, but most communication

and computation is shifted to a point in time when it does not

impair trading. In this way, trading can happen with a single

message from the client to the exchange with relatively little

computation required — the performance perceived by traders

when conducting trades on a decentralized exchange is now

comparable to trading on a centralized exchange.

Tables IV and V show the performance for the prepara-

tion and finalization phases respectively. With the 2-phase

approach, most of the communication and computation is

moved into the preparation phase. The preparation phase takes
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TABLE III
SIGNATURE GENERATION PROTOCOL: FINALIZATION PHASE

Exchange Client

Compute r from R

c3 = Enc(k−1

2
· r · d2 · d1enc + k−1

2
·m+ ρ · q)

Delete R, k2, and ρ
c3,R
←−−−

Compute r from R
Lookup k1 with R

Compute s = k−1

1
·Dec(c3) mod q

Delete R and k1
Verify signature (r, s)

d2: the client’s secret share.
d1enc: the encrypted secret share of the exchange.
ρ: the (precomputed) randomness for the Paillier homomorphic encryption scheme.
m: the (message’s) hash to be signed.
q: the order of the curve.

TABLE IV
PERFORMANCE: PREPARATION PHASE

Exchange Client

Time: ∼13ms
33 B
←−−−

Time: ∼0.16ms
33B
−−−→

TABLE V
PERFORMANCE: FINALIZATION PHASE

Exchange Client

Time: ∼1.72ms
545 B
←−−−

Time: ∼2.46ms

few computational and bandwidth resources, and the overall

time is dominated by communication delays. The finalization

phase is very fast and takes just 4ms in total and a single

message from the client to the exchange4

F. Signing Policy

On a decentralized exchange, a full client without API keys

signs a transaction and sends the signature to the exchange.

For API keys, however, the exchange receives a presignature

from the client and needs to complete it first. The exchange

may base its agreement to complete a signature upon several

factors, without taking custody of the user’s funds. These

factors are specified as signing policy by the user. Obviously,

not the holder of the API key but only the user must be able to

create and modify the signing policy. Such policies basically

restrict the conditions under which the exchange participates

in signature generation. Policies may involve for example:

4Note that the numbers depend on the elliptic curve used. For the measure-
ments we used secp256k1.

• Daily / weekly / monthly withdrawal limits. The user

can set an amount that is allowed to be moved from their

exchange account each day. This can limit damage in the

event of a compromised API key.

• IP address restrictions for trading and/or withdrawal.

• Location restrictions for trading and/or withdrawal.

• Withdrawal addresses restrictions.

• Daily / weekly / monthly trading limits. Limits are

imposed upon how much users can trade.

• Time delayed withdrawals, where funds will be moved

only after a 24- or 48-hour period. Such delay allow

users in the event of a hacked account to reach out to the

exchange and prevent fund movement within the delay

period.

• Allow access only from specific devices.

• Allow access only to specific markets.

• Restrictions based on biometric information such as a

fingerprint scan.

VI. DISCUSSION AND FUTURE WORK

A. Threshold EdDSA

We have extended the API key protocol described in

Section V to also work with the EdDSA signature scheme.

In contrast to threshold ECDSA (where multiplicative secret

sharing is used), we use additive secret sharing for threshold

EdDSA. For API key generation, the client generates a random

scalar r which represents its secret share and computes the

server’s secret share as a− r mod L, where a is the signing

key. The client keeps its secret share and sends the (encrypted)

exchange secret share to the exchange.

For signature generation we employ the same DH-like

approach as we do for threshold ECDSA. The resulting point

is computed a bit different though as R is the (point) addition

of the public client point plus the public server point. While

using that approach breaks EdDSA’s deterministic approach,

it does generates valid signatures nonetheless. Like in the

threshold ECDSA scheme, we use the two-phased approach

with a message-independent phase and a second phase in



7

TABLE VI
PAILLIER PERFORMANCE

Operation / Key size 512 bit 1024 bit 2048 bit 3072 bit 4096 bit 8192 bit

Precompute randomness 320 µs 2106 µs 13 595 µs 39 583 µs 74 151 µs 420 651 µs
Encrypt <1 µs 1 µs 4 µs 7 µs 12 µs 35 µs
Decrypt 106 µs 453 µs 2081 µs 6032 µs 13 666 µs 78 387 µs

which the signature for a particular message is generated in

order to facilitate signature generation with a single message

from client to server and therefore improve the performance

perceived by users.

Signature generation for threshold EdDSA is straight-

forward: the client can compute its part of the second

part of the signature s as s client = r client + h ∗
client secret share, with h = H(r|A|M) (r: first part of the

signature, A: public key, M : message). s client is sent over

to the server. The server computes its corresponding part and

adds both numbers, which results in the second part of the sig-

nature s. The computations are very efficient, since the client

does not need to do computations on the encrypted server

secret share. For this reason, the computational performance of

signature generation in threshold EdDSA is exceptional - just

marginally slower than conventional, non-threshold EdDSA.

B. Generalization to Other Decentralized Services

In this paper, we explored the application of decentralized

cryptocurrency exchanges, i.e., the Nash exchange. The proto-

col we presented, however, can be generalized to other decen-

tralized services, and we have already applied the protocol to

Uniswap and 1inch, allowing users to trade via the associated

smart contracts without accessing their full secret key.

C. Paillier Key Size

The currently recommended key size for the Paillier cryp-

tosystem is 2048bit. Increasing the key size would be de-

sirable but larger keys significantly increase the times for

encrypting and decrypting. Table VI shows the results of our

evaluation. Precomputing randomness takes longest, but is part

of the signature preparation phase and does not affect signature

finalization. Encryption increases as well with larger key sizes

but the time it takes is negligible even with very large keys.

Decryption, however, takes a significant amount of time and is

part of the signature finalization phase. We leave the question

of how to optimize the performance of Paillier decryption with

large keys as future work.

VII. CONCLUSION

In this paper, we presented a protocol enabling API keys

for decentralized cryptocurrency exchanges that is suitable

for both security-sensitive end-users and professional traders

alike. Given the fact that the full secret key is never required

for any day-to-day operation, the risk of compromised secret

keys is drastically reduced. The protocol presented in this

paper allows users of an exchange to create many API keys

associated with their account, each of which may be entitled to

different (withdrawal and trading) limits. This allows trading

companies to use decentralized exchanges without trusting

their employees with credentials that have access to the

full secret key material. To this end, client and exchange

engage in an interactive signature generation protocol. The

communication overhead is negligible, and the effective delay

due to computations is roughly 4ms, satisfying the low latency

requirements of professional traders. High performance is

achieved by employing a 2-phase approach, which shifts the

majority of the computational time required as well as the

additional communication delay (caused by the interactivity

of the protocol) into a message-independent phase. In this

way, a signature can be finalized with a single message from

client to the exchange. We additionally provide an open source

implementation of the protocol in Rust 5.
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